Isometric Embeddings and Universal Spaces

نویسندگان

  • G. Godefroy
  • N. J. Kalton
چکیده

We show that if a separable Banach space Z contains isometric copies of every strictly convex separable Banach space, then Z actually contains an isometric copy of every separable Banach space. We prove that if Y is any separable Banach space of dimension at least 2, then the collection of separable Banach spaces which contain an isometric copy of Y is analytic non Borel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The universal separable metric space of Urysohn and isometric embeddings thereof in Banach spaces

This paper is an investigation of the universal separable metric space up to isometry U discovered by Urysohn. A concrete construction of U as a metric subspace of the space C[0, 1] of functions from [0, 1] to the reals with the supremum metric is given. An answer is given to a question of Sierpiński on isometric embeddings of U in C[0, 1]. It is shown that the closed linear span of an isometri...

متن کامل

Almost Isometric Embeddings of Metric Spaces

We investigate a relations of almost isometric embedding and almost isometry between metric spaces and prove that with respect

متن کامل

Covers and the Curve Complex

We propose a program of studying the coarse geometry of combinatorial moduli spaces of surfaces by classifying the quasi-isometric embeddings between them. We provide the first non-trivial examples of quasi-isometric embeddings between curve complexes. These are induced either via orbifold coverings or by puncturing a closed surface. As a corollary, we give new quasiisometric embeddings between...

متن کامل

m at h . FA ] 8 S ep 1 99 7 DISTANCES BETWEEN BANACH SPACES

The main object of the paper is to study the distance between Banach spaces introduced by Kadets. For Banach spaces X and Y , the Kadets distance is defined to be the infimum of the Hausdorff distance d(B X , B Y) between the respective closed unit balls over all isometric linear embeddings of X and Y into a common Banach space Z. This is compared with the Gromov-Hausdorff distance which is def...

متن کامل

Lower bounds for projective designs, cubature formulas and related isometric embeddings

Yudin’s lower bound [21] for the spherical designs is generalized to the cubature formulas on the projective spaces over a field K ⊂ {R, C, H} and thus to isometric embeddings l 2;K → l p;K with p ∈ 2N. For large p and in some other situations this is essentially better than those known before. AMS Classification: 46B04, 05B30

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007